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Abstract. In this paper, we have generalized the definition of the vector

space by considering the group as a canonical m-ary hypergroup, the field

as a krasner (m,n)-hyperfield and considering the multiplication structure

of a vector by a scalar as hyperstructure. Also we will be consider a

normed m-ary hypervector space and introduce the concept of convergent

of sequence on m-ary hypernormed spaces and bundle subset.

Keywords: m-Ary hypervector space, Krasner (m,n)-hyperfield, Bundle sub-

set, Hypernorm.

2000 Mathematics subject classification: 20N15, 46C50.

1. Introduction

Hypergroups were introduced in 1934 by a French mathematician Marty

[19] Marty [19]at the 8th Congress of Scandinavian Mathematicians. Since

then, hundreds of papers and several books have been written on this topic.

Nowadays, hyperstructures have a lot of applications to several domains of

mathematics and computer science [1, 2, 3]. Algebraic hyperstructures are a

suitable generalization of classical algebraic structures. In a classical algebraic

structure, the composition of two elements is an element, while in an algebraic

hyperstructure, the composition of two elements is a set. More exactly, if V is

a non-empty set and P∗(V ) is the set of all non-empty subsets of V , then we
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consider maps ∗ : V × V −→ P∗(V ). This maps are called (binary) hyperop-

erations. Sometimes, external hyperoperations are considered, which are maps

∗ : R×V −→ P∗(V ), where R ̸= V . An example of a hyperstructure, endowed

both with an internal hyperoperation and an external hyperoperation is the

so-called hypermodule.

n-Ary generalizations of algebraic structures is the most natural way for fur-

ther development and deeper understanding of their fundamental properties.

The notion of n-ary group was introduced by Dörnte [12]. Since then many

papers concerning various n-ary algebras have appeared in the literature, for

example see [8, 9, 10, 13, 14, 18, 22]. The concept of n-ary hypergroup is de-

fined by Davvaz and Vougiouklis in [4], which is a generalization of the concept

of hypergroup in the sense of Marty and a generalization of n-ary group, too.

Then this concept was studied by Ghadiri and Waphare [15], Leoreanu-Fotea

and Davvaz [17, 18], Davvaz et al. [5, 6] and others. Also Leoreanu-Fotea and

Davvaz introduced and studied the notion of a partial n-hypergroupoid, associ-

ated with a binary relation and some important results, concerning Rosenberg

partial hypergroupoids, induced by relations, are generalized to the case of n-

hypergroupoids

Recently, the notation for (m,n)-hyperrings was defined by Mirvakili and

Davvaz [20] and they obtained (m,n)-rings from (m,n)-hyperrings using fun-

damental relations. Moreover, they defined a certain class of (m,n)-hyperrings

called Krasner (m,n)-hyperrings. Krasner (m,n)-hyperrings are a generaliza-

tion of (m,n)-rings and a generalization of Krasner hyperrings. Also, several

properties of Krasner (m,n)-hyperrings are presented.

The main purpose of this paper is to generalize and develop a few basic

properties of the vector space and normed vector space. Also, we have estab-

lished a few basic properties in m-ary hypervector space and several important

properties obtained. Moreover, we introduced the notion of bundle subspace

and we have established that the kernel of any linear functional is a bundle

subset and for every bundle subset there exists a linear functional such that

this bundle subset contained in the kernel of this lineal functional.

2. m-Ary Hypervector Space

Let R be a non-empty set and n ∈ N, n ≥ 2 and f : Rn −→ P∗(R),

where P∗(R) is the set of all non-empty subsets of R. Then, f is called an

n-ary hyperoperation on R and the pair (R, f) is called an n-ary hypergroupoid.

If R1, ..., Rn are non-empty subsets of R, then we define

f(R1, R2, ..., Rn) =
∪

{f(x1, x2, ..., xn) : xi ∈ Ri, i ∈ 1, 2, ..., n}.

The sequence xi, xi+1, ..., xj will be denoted by xji . For j < i, xji is the empty

set. An n-ary hypergroupoid (R, f) will be called an n-ary semihypergroup if
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we have:

f

(
(i−1)
x1 , f

(
(n+i−1)
xi

)
, x

(2n−1)
n+i

)
= f

(
(j−1)
x1 , f

(
(n+j−1)
xj

)
,
(2n−1)
xn+j

)
,

for every i, j ∈ {1, 2, ..., n} and x1, x2, ...x2n−1 ∈ R. Suppose that the equation

y ∈ f

(
(i−1)
x1 , zi,

n
xi+1

)
,

has a solution zi ∈ R for every x1, x2, ..., xi−1, xi+1, .., xn, y ∈ R. Then, R is

called n-ary hypergroup. An n-ary hypergroupoid (R, f) is commutative if for

all σ ∈ Sn, f(x1, x2, ..., xn) = f(xσ(1), xσ(2), ..., xσ(n)). A commutative n-ary

hypergroupoid (R, f) is called canonical n-ary hypergroup if following axioms

hold for all 1 ≤ i, j ≤ n and x, xi ∈ R:

(i) There exists a unique element 0 ∈ R such that x = f

(
(i−1)

0 , x,
(n−i)

0

)
,

(ii) There exists a unique operation − on R such that x ∈ f(xn1 ) implies

that xi ∈ f(−xi−1,−xi−2, ...− x1, x,−xn, ...,−xi+1).

Definition 2.1. A Krasner (m,n)-hyperfield is an algebraic hyperstructure

(R, f, g) which satisfies the following axioms:

1. (R, f) is a canonical m-ary hypergroup,

2. (R, g) is an n-ary semigroup,

3. The n-ary operation is distributive with respect to the m-ary hyperop-

eration f, i.e, for every xi−1
i , xni+1, a

m
1 , 1 ≤ i ≤ n

g

(
(i−1)
xi , f (a

m
1 ) ,

n
xi+1

)
= f

(
g

(
(i−1)
x1 , a1, x

n
i+1

)
, ..., g

(
(i−1)
xi , am,

n
xi+1

))
.

4. 0 is a zero element (absorbing element) of the n-ary operation g, i.e.,

for every xn2 ∈ R we have

g(0, xn2 ) = g(x1, 0, x
n
3 ) = ... = g(x

(n−1)
1 , 0) = 0,

5. there exists an element e ∈ R, called the identity element such that

g(a, e, ..., e︸ ︷︷ ︸
n−1

) = a, for every a ∈ R,

6. for each non-zero element a ∈ R there exists, an element a−1 such that

g(a, a−1, ..., a−1) = e,

7. g is a commutative operation.

Example 2.2. Let R be the set of all real numbers and G be a subgroup of

(R, ·). We define (a, b) ∈ ρ if and only if there exists g ∈ G such that a = bg−1.

This is an equivalence relation on R. Set [R : ρ] = {ρ(a) : a ∈ R}, where ρ(a) is
an equivalence class a ∈ R, and define the m-ary hyperoperation f and n-ary

multiplication g as follows:

f(ρ(a1), ρ(a2), ..., ρ(am)) = {ρ(x) : ρ(x) ⊆ ρ(a1) + ρ(a2) + ...+ ρ(am)},
g(ρ(a1), ρ(a2), ..., ρ(an)) = ρ(a1a2...an),
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then R is a Krasner (m,n)-hyperring.

Definition 2.3. Let R be the set of all real numbers. The Krasner (m,n)-

hyperfield denoted on R is called the real Krasner (m,n)-hyperfield.

Definition 2.4. Let (F, f, g) and (V, h) be a Krasner (m1, n1)-ary hyperfield

and be a canonical m-ary hypergroup, respectively. Then, V is said to be

m-ary hypervector space over Krasner (m1, n1)-hyperfield F , if there exists a

hypermultiplication · : F × V −→ P∗(V )(image to be denoted by x · v for

x ∈ F and v ∈ V ) such that for all x, xm1
1 , xn1

1 ∈ F and v, vm1 ∈ V satisfies the

following axiom:

1. x · (h(vm1 )) = h(x · v1, ..., x · vm),

2. f(xm1
1 ) · v = h(x1 · v, x2 · v, ..., xm1 · v),

3. g(xn1
1 ) · v = x1 · (x2 · (x3...xn1

· v),
4. (−x) · v = x · (−v) = −(x · v),
5. v ∈ 1F · v, 0 = 0 · v.

where 1F is the identity element of F and P∗(V ) is the set of all non-empty

subset of V . In this definition if V is an m-ary group, then V is called additive

m-ary hypervector space.

Throughout this paper, by an m-ary hypervector space V , we mean a hyper-

vector space (V, h, ∗) and by a Krasner (m,n)-hyperfield F , we mean a Krasner

(m,n)-hyperfield (F, f, g).

Example 2.5. Let (F, f, g) be a Krasner (m, 2)-hyperfield and V = F ×F . We

define m-ary hyperoperation h on V as follows:

h((a1, b1), (a2, b2), ..., (am, bm)) = {(x, y) : x ∈ f(a1, a2, ..., am), y ∈ f(b1, b2, ..., bm)},

then (V, h) is a canonical m-ary hypergroup. Now we define a scalar multipli-

cation ∗ : F × V −→ P(V ) by

c ∗ (a, b) = (g(c, a), g(c, b)),

where c ∈ F and (a, b) ∈ V . Then we easily verify that V is an m-ary hyper-

vector space.

Proposition 2.6. (Construction). Let (V,+, ·) be a hypermodule over field F

and m-ary hyperoperation h on V defined by h(vm1 ) =
m∑
i=1

vi. Then, V is an

m-ary hypermodule.

Proof. We prove that V is a canonical m-ary hypergroup. Since + is well-

defined implies that h is well-defined. Let 0 be the zero element of (V,+).

Then, 0 is a zero element of (V, h). Now, let v, vm1 ∈ V and 1 ≤ j ≤ m,
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such that v ∈ h(v1, v2, ..., vj−1, vj , vj+1, ..., vm). Then, v ∈
m∑

i=1,i ̸=j

vi + vj . This

implies that there exists z ∈
m∑

i=1,i ̸=j

vi, such that v ∈ z + vj . Hence vj ∈

−z + v. But −z ∈ −

 m∑
i=1,i̸=j

vi

 =
m∑

i=1,i ̸=j

−vi. This implies that vj ∈

h(−vj−1, ...,−v1, v,−vm, ..., vm+1). So, (V, h) is a canonical m-ary hypergroup.

Since the multiplication · is distributive with respect to the hyperoperation +,

it is not difficult to see that (V, h, ·) is an m-ary hypermodule. □

A subset V1 of an m-ary hypervector space V over F is called m-ary hyper-

vector space if V1 is an m-ary hypervector space over F . So a subset V1 of V is

an m-ary hypervector subspace if and only if following statements holds:

1. for every vm1 ∈ V1, h(v
m
1 ) ⊆ V1,

2. for every x ∈ F and v1 ∈ V1, x · v1 ⊆ V1.

Definition 2.7. Let V1 and V2 be two m-ary hypervector space. We say that

T : V1 −→ V1 is a homomorphism if

T (h(v1, v2, ..., vm)) = h(T (v1), T (v2), ..., T (vm)), T (λ · v) = λ · T (v),

where v1, v2, .., vm, v ∈ V1 and λ ∈ F .

Proposition 2.8. Let V1 be a non-empty subset of V . Then, V1 is an m-ary

hyper subspace if and only if h(x1 · v1, ..., xm · vm) ⊆ V1, for every xm1 ∈ F and

vm1 ∈ V1.

Proof. Suppose that V1 is an m-ary hyper subspace of V . So obviously, h(x1 ·
v1, x2 · v2, ..., xm · vm) ⊆ V1.

Conversely, let vm1 ∈ V1. Since 1F ∈ F , we have

h(vm1 ) ⊆ h(1F · v1, 1F · v2, ..., 1F · vm) ⊆ V1.

Let x ∈ F and v1 ∈ V1. Hence x · v1 = h(x · v1, 0, 0, ..., 0︸ ︷︷ ︸
m−1

) = h(x · v1, 0 · v1, ..., 0 ·

v1) ⊆ V1. This complete the proof. □

Proposition 2.9. Let V be anm-ary hypervector space over an (m,n)-hyperfield

F . Then,

1. x · 0 = {0}, for every x ∈ F ,

2. x · v = {0}, implies that x = 0 or v = 0.

Proof. 1. Suppose that x ∈ F . By axiom (5), for every v ∈ V , 0 · v = 0. Then

we have

x·0 = x·(0·v) = x·(0·(0·v)) = ... = x·(0 · (0...(0︸ ︷︷ ︸
n−1

·v)) = g(x, 0, 0, ..., 0︸ ︷︷ ︸
n−1

)·v = 0·v = 0.
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2. Let 0 ̸= x ∈ F and v ∈ V be such that x · v = 0. Since x−1 ∈ F , implies

that

0 = x·v = x−1·(x·v) = ... = x−1(x−1(...x−1︸ ︷︷ ︸
n−1

(x.v)) = g(x, x−1, x−1, ..., x−1︸ ︷︷ ︸
n−1

)·v = v.

□

3. Hypernorm Spaces

In this section we define a hypernorm on V and then we have established

some important results. Then we introduce the notion of innerproduct and

consider the relation between the structures of norm and innerproduct on hy-

perspaces. Moreover, we introduce the bundle subset and prove some important

theorems.

Definition 3.1. Let V be an m-ary hypervector space over the real Krasner

(m,n) hyperfield R. A hypernorm on V is a mapping ∥ · ∥ : V −→ R, where R
is a usual real space, such that for all x ∈ R and v, v1, v2, ..., vm ∈ V following

conditions hold:

1. ∥v∥ ≥ 0 and ∥v∥ = 0 if and only if v = 0,

2. sup∥h (vm1 ) ∥ ≤
m∑
i=1

∥vi∥, where ∥h (vm1 ) ∥ = {∥x∥ : x ∈ h (vm1 )},

3. sup∥x · v∥ ≤ |x|∥v∥, where ∥x · v∥ = {∥y∥ : y ∈ x · v}.

Example 3.2. Let V = Z4 ∪{0} and define 2-ary hyperoperation f as follows:

f(ā, 0) = f(0, ā) = {ā} for all ā ∈ V,

f(ā, ā) = {ā, 0} for all ā ∈ V,

f(ā, b̄) = f(b̄, ā) = V \{ā, b̄}.

Then, (V, f) is a canonical 2-ary hypergroup. If we define the 2-ary multipli-

cation on F = V by

g(ā, 0) = g(0, ā) = 0 for all ā ∈ V,

g(ā, b̄) = ab.

then the map ∥ x ∥−→ x is a hypernorm on V . Then (F, f, g) is a Krasner

(2, 2)- hyperfield. We define the scaler multiplication

∗ : F × V −→ V

(ā, b̄) 7−→ g(ā, b̄).

It can be verified obviously that V is a 2-ary hypervector space. We define

∥ · ∥: V −→ R, by x̄ −→ x. Then (V, ∥ · ∥) is normed 2-ary hypervector space.
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Example 3.3. Let (Zp,+, ·) be a field and V = Zp. We define a 2-ary hyper-

operation f as follows:

f(a, b) = {a, b, a+ b}, for all a, b ∈ Zp and a ̸= −b,
f(a, 0) = f(0, a) = a, for all a ∈ Zp,

f(a,−a) = Zp, for all a ∈ Zp\0.

Then (V, f) is a canonical 2-ary hypergroup. Let F = Zp and scaler multipli-

cation on ∗ : F × V −→ V be defined by (a, b) 7−→ ab. Then, V is a 2-ary

hypervector space. We define ∥ · ∥: V −→ R by ∥ x ∥−→ x, for all x ∈ V .

Then ∥ · ∥ is a hypernorm on V .

Suppose that ∥ · ∥ is a hypernorm on V then the couple (V, ∥ · ∥) is said to

be a normed m-ary hypervector space or hypernormed space. In this section V

will be consider as a hypernormed space.

Let V1 and V2 be two m-ary hypervector space. A linear transformation is a

mapping T : V1 −→ V2 such that for every v1, v2, ..., vm, v ∈ V1 and λ ∈ F the

following hold:

1. T (h(v1, v2, ..., vm)) = h(T (x1), T (x2), ..., T (xm)),

2. T (λ · v) = λ · T (v).
We define ker T = {v ∈ V1 : T (v) = 0}. A linear transformation T : V −→ F

is called lineal functional, where V is an m-ary hypervector space over F .

Proposition 3.4. Let V be an m-ary hypervector space and T1, T2 be two linear

transformations such that ker T1 = ker T2. Then, there is λ ∈ F such that

T2 = λT1.

Proof. Suppose that T1 ̸= 0. Indeed, it is trivial if T1 = 0. Let v0 ∈ V be such

that T1(v0) ̸= 0. This implies that T2(v0) ̸= 0. Let λ = T2(v0)
T1(v0)

, v ∈ V and

δ = T1(v)
T1(v0)

. So T1(v) = δ · T1(v0) = T1(δ · v0). For every w ∈ δ · v0, we have

T1(v − w) = 0. Hence v − δ · v0 ⊆ ker T1 = ker T2. Therefore,

T2(v) = T2(δ · v0) = δ · T2(v0) = δλ · T1(v0) = λ · T1(v).

This completes the proof. □

Proposition 3.5. Let V be a hypernormed space. Then, following assertions

holds:

1. sup ∥ h(V1, V2, ..., Vm) ∥≤
m∑
i=1

sup ∥Vi∥,

where V1, V2, ..., Vm are subsets of V ,

2. ∥v∥ = ∥ − v∥, for every v ∈ V ,

3.

∥∥∥∥h(v1,−v2, (m−2)

0

)∥∥∥∥ =

∥∥∥∥h(−v1, v2, (m−2)

0

)∥∥∥∥,
4. if inf

∥∥∥∥h(v1,−v2, (m−2)

0

)∥∥∥∥ = 0, then ∥v1∥ = ∥v2∥,
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5. | ∥v1∥ − ∥v2∥ |≤ inf

∥∥∥∥h(v1,−v2, (m−2)

0

)∥∥∥∥.
Proof. 1. Let vi ∈ Vi, for 1 ≤ i ≤ m. Then, we have

sup ∥h(vm1 )∥ ≤
m∑
i=1

∥vi∥ ≤
m∑
i=1

sup ∥Vi∥.

Hence,

sup vi∈Vi (∥sup h(vm1 )∥) ≤
m∑
i=1

∥vi∥ ≤
m∑
i=1

sup ∥Vi∥.

Therefore, sup ∥h(V1, V2, ..., Vm)∥ ≤
m∑
i=1

sup ∥Vi∥.

2. Suppose that v ∈ V . Then we have

−v ∈ −1 · v =⇒ ∥− v∥ ≤ sup∥− 1 · v∥ =⇒ ∥− v∥ ≤ |− 1|∥v∥ =⇒ ∥− v∥ ≤ ∥v∥.

Also

v ∈ −1 · −v =⇒ ∥v∥ ≤ sup∥ − 1 · −v∥ =⇒ ∥v∥ ≤ | − 1|∥ − v∥ =⇒ ∥v∥ ≤ ∥− v∥.

Hence, ∥v∥ = ∥ − v∥.

3. Suppose that v ∈ h

(
v1,−v2,

(m−2)

0

)
. Then we have

v ∈ h

(
v1,−v2,

(m−2)

0

)
⇐⇒ v1 ∈ h

(
−(−v2), v,

(m−2)

0

)
⇐⇒ v1 ∈ h

(
v2, v,

(m−2)

0

)
⇐⇒ v2 ∈ h

(
v1,−v,

(m−2)

0

)
⇐⇒ −v ∈ h

(
v2,−v1,

(m−2)

0

)
.
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This implies that

∥∥∥∥h(v1,−v2, (m−2)

0

)∥∥∥∥ =

∥∥∥∥h(−v1, v2, (m−2)

0

)∥∥∥∥.
4. Let v ∈ h

(
v1,−v2,

(m−2)

0

)
and w ∈ h

(
v2,−v3,

(m−2)

0

)
. Then, we have

−v2 ∈ h

(
v,−v1,

(m−2)

0

)
, v2 ∈ h

(
w,−(−v3),

(m−2)

0

)
=⇒ −v2 ∈ h

(
v,−v1,

(m−2)

0

)
, v2 ∈ h

(
w, v3,

(m−2)

0

)
=⇒ h

(
v2,−v2,

(m−2)

0

)
⊆ h

(
h

(
w, v3,

(m−2)

0

)
, h

(
v,−v1,

(m−2)

0

)
,
(m−2)

0

)
=⇒ 0 ∈ h

(
h

(
v, w,

(m−2)

0

)
, h

(
−v1, v3,

(m−2)

0

)
,
(m−2)

0

)
=⇒ 0 ∈ h

(
h

(
v, w,

(m−2)

0

)
, z,

(m−2)

0

)
, for some z ∈ h

(
−v1, v3,

(m−2)

0

)
=⇒ −z ∈ h

(
v, w,

(m−2)

0

)
=⇒ ∥− z∥ ≤ sup

∥∥∥∥h(v, w, (m−2)

0

)∥∥∥∥ ≤ ∥v∥+ ∥w∥

=⇒ sup

∥∥∥∥h(v1,−v3, (m−2)

0

)∥∥∥∥ ≤ sup

∥∥∥∥h(v1,−v2, (m−2)

0

)∥∥∥∥+ sup

∥∥∥∥h(v2,−v3, (m−2)

0

)∥∥∥∥ .
Moreover,

sup

∥∥∥∥h(v1, (m−1)

0

)∥∥∥∥ ≤ sup

∥∥∥∥h(v1,−v2, (m−2)

0

)∥∥∥∥+ sup

∥∥∥∥h(v2, (m−1)

0

)∥∥∥∥
=⇒ ∥v1∥ ≤ sup

∥∥∥∥h(v1,−v2, (m−2)

0

)∥∥∥∥+ ∥v2∥ =⇒ ∥v1∥ ≤ ∥v2∥.

and

sup

∥∥∥∥h(v2, (m−1)

0

)∥∥∥∥ ≤ sup

∥∥∥∥h(v2,−v1, (m−2)

0

)∥∥∥∥+ sup

∥∥∥∥h(v1, (m−1)

0

)∥∥∥∥
=⇒ ∥v2∥ ≤ sup

∥∥∥∥h(v2,−v1, (m−2)

0

)∥∥∥∥+ ∥v1∥

=⇒ ∥v2∥ ≤ sup

∥∥∥∥h(v2,−v1, (m−1)

0

)∥∥∥∥+ ∥v1∥

=⇒ ∥v2∥ ≤ ∥v1∥.
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5. Suppose that v ∈ h

(
v1,−v2,

(m−2)

0

)
. Then v1 ∈ h

(
v, v2,

(m−2)

0

)
=⇒ ∥v1∥ ≤ sup

∥∥∥∥h(v, v2, (m−2)

0

)∥∥∥∥ ≤ ∥v∥+ ∥v2∥

=⇒ ∥v1∥ − ∥v2∥ ≤ ∥v∥

=⇒ ∥v1∥ − ∥v2∥ ≤ sup

∥∥∥∥h(v,−v2, (m−2)

0

)∥∥∥∥ .
Moreover −v2 ∈ h

(
v,−v1,

(m−2)

0

)
. Then, we have

=⇒ ∥v2∥ ≤ sup

∥∥∥∥h(v,−v1, (m−2)

0

)∥∥∥∥ ≤ ∥v∥+ ∥v1∥

=⇒ ∥v2∥ − ∥v1∥ ≤ ∥v∥

=⇒ ∥v2∥ − ∥v1∥ ≤ sup

∥∥∥∥h(v1,−v2, (m−2)

0

)∥∥∥∥ .
This completes the proof. □

Definition 3.6. Let {an} be a sequence in a normed hypervector space V . We

say that this sequence is converge to a point a if for any ϵ > 0; there exists a

positive integer m such that sup

∥∥∥∥h(an,−a, (m−2)

0

)∥∥∥∥ < ϵ, for every n ≥ m. If

a sequence {an} converges to a point a in V , then we write limn−→∞ = a and

we call a is a limit of {an} in V .

Proposition 3.7. Let {an} be a sequence in a normed hypervector space V

such that limn−→∞an = a and limn−→∞an = b. Then, a = b.

Proof. Suppose that ϵ > 0. Then there exists a positive integer m such that

sup

∥∥∥∥h(an,−a, (m−2)

0

)∥∥∥∥ < ϵ

2
, sup

∥∥∥∥h(an,−b, (m−2)

0

)∥∥∥∥ < ϵ

2
,

for every n ≥ m. By the theorem 3.5, we have

sup

∥∥∥∥h(a,−b, (m−2)

0

)∥∥∥∥ = sup

∥∥∥∥h(h(a, (m−1)

0

)
,−b,

(m−2)

0

)∥∥∥∥
≤ sup

∥∥∥∥h(h(a, h(an,−an, (m−2)

0

)
,
(m−2)

0

)
,−b,

(m−2)

0

)∥∥∥∥
≤ sup

∥∥∥∥h(h(h(a,−an, (m−2)

0

)
, an,

(m−2)

0

)
,−b,

(m−2)

0

)∥∥∥∥
≤ sup

∥∥∥∥h(h(a,−an, (m−2)

0

)
, h

(
an,−b,

(m−2)

0

)
,
(m−2)

0

)∥∥∥∥
≤ sup

∥∥∥∥h(an,−a, (m−2)

0

)∥∥∥∥+ sup

∥∥∥∥h(an,−b, (m−2)

0

)∥∥∥∥ .
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Therefore,

sup

∥∥∥∥h(a,−b, (m−2)

0

)∥∥∥∥ < ϵ,

for every ϵ > 0. This implies that h

(
a,−b,

(m−2)

0

)
= 0.

a = h

(
a,

(m−1)

0

)
⊆ h

(
h

(
b,−b,

(m−2)

0

)
, a,

(m−3)

0

)
= h

(
b, h

(
a,−b,

(m−2)

0

)
,
(m−3)

0

)
= h

(
b,

(m−1)

0

)
= b.

This completes the proof. □

Proposition 3.8. Let {an} be a sequence in V and limn−→∞ = a. Then, this

sequence is bonded.

Proof. Suppose that the sequence a sequence {an} converges to a point a in V .

Then there exists a positive number m such that

sup

∥∥∥∥h(an,−a, (m−2)

0

)∥∥∥∥ < 1,

for every n ≥ m. Let x ∈ h

(
an,−a,

(m−2)

0

)
. Then, an ∈ h

(
x, a,

(m−2)

0

)
. This

implies that

∥an∥ ≤ sup

∥∥∥∥h(x, a, (m−2)

0

)∥∥∥∥ ≤ ∥x∥+ ∥a∥.

So

∥an∥ ≤ ∥x∥+ ∥a∥ =⇒ ∥an∥ ≤ sup

∥∥∥∥h(an,−a, (m−2)

0

)∥∥∥∥+ ∥a∥

=⇒ ∥an∥ ≤ 1 + ∥a∥

Let M = max{∥a1∥ , ∥a2∥ , ..., ∥am−1∥ , 1 + ∥a∥}. Therefore, ∥an∥ ≤ M for all

positive integer n.

This completes the proof. □

Theorem 3.9. Let {an} and {bn} be sequences in V such that limn−→∞an = a

and limn−→∞bn = b, respectively and c ∈ h

(
a, b,

(m−2)

0

)
. Then,there there

exists a sequence {cn} such that cn ∈ h

(
an, bn,

(m−2)

0

)
and limn−→∞cn = c.

Proof. Suppose that {an} and {bn} be two convergent sequences which are

convergent to a and b, respectively. There is a positive integer m such that

sup

∥∥∥∥h(an,−a, (m−2)

0

)∥∥∥∥ < ϵ

2
, sup

∥∥∥∥h(bn,−b, (m−2)

0

)∥∥∥∥ < ϵ

2
,
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for every n ≥ m. Let x ∈ h

(
an,−a,

(m−2)

0

)
and y ∈ h

(
bn,−b,

(m−2)

0

)
.

Then, an ∈ h

(
x, a,

(m−2)

0

)
and bn ∈ h

(
y, b,

(m−2)

0

)
. This implies that a ∈

h

(
an,−x,

(m−2)

0

)
and b ∈ h

(
bn,−y,

(m−2)

0

)
. Hence

h

(
a, b,

(m−2)

0

)
⊆ h

(
h

(
an,−x,

(m−2)

0

)
, h

(
bn,−y,

(m−2)

0

)
,
(m−2)

0

)
= h

(
h

(
h

(
an,−x,

(m−2)

0

)
, bn,

(m−2)

0

)
,−y,

(m−2)

0

)
= h

(
h

(
h

(
an, bn,

(m−2)

0

)
,−x,

(m−2)

0

)
,−y,

(m−2)

0

)
= h

(
h

(
an, bn,

(m−2)

0

)
, h

(
−x,−y,

(m−2)

0

)
,
(m−2)

0

)
.

Hence for every n there exist xn ∈ h

(
an, bn,

(m−2)

0

)
and yn ∈ h

(
−x,−y,

(m−2)

0

)
such that c ∈ h

(
xn, yn,

(m−2)

0

)
. So yn ∈ h

(
c,−xn,

(m−2)

0

)
.

∥yn∥ ≤ sup

∥∥∥∥h(−x,−y, (m−2)

0

)∥∥∥∥ ≤ ∥ − x∥+ ∥ − y∥ = ∥x∥+ ∥y∥

=⇒ sup

∥∥∥∥h(−x,−y, (m−2)

0

)∥∥∥∥ ≤ ∥x∥+ ∥y∥

=⇒ sup

∥∥∥∥h(xn,−c, (m−2)

0

)∥∥∥∥ ≤ ∥x∥+ ∥y∥

=⇒ sup

∥∥∥∥h(h(an, bn, (m−2)

0

)
,−c,

(m−2)

0

)∥∥∥∥ ≤ ∥x∥+ ∥y∥

=⇒ sup

∥∥∥∥h(h(an, bn, (m−2)

0

)
,−c,

(m−2)

0

)∥∥∥∥ ≤
{
∥x∥ : x ∈ h

(
an,−a,

(m−2)

0

)}
+

{
∥y∥ : y ∈ h

(
bn,−b,

(m−2)

0

)}
=⇒ sup

∥∥∥∥h(h(an, bn, (m−2)

0

)
,−c,

(m−2)

0

)∥∥∥∥ ≤ sup

∥∥∥∥h(an,−a, (m−2)

0

)∥∥∥∥
+sup

∥∥∥∥h(bn,−b, (m−2)

0

)∥∥∥∥ .
Therefore for every n, there exists a sequence cn such that

sup

∥∥∥∥h(cn,−c, (m−2)

0

)∥∥∥∥ ≤ sup

∥∥∥∥h(an,−a, (m−2)

0

)∥∥∥∥+ sup

∥∥∥∥h(bn,−b, (m−2)

0

)∥∥∥∥
Therefore there exists a sequence cn which converges to c.

This completes the proof. □
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Proposition 3.10. Let a sequence {an} converges to a in V and a sequence

tn converges to t in R. Then for every b ∈ t.a there exists a sequence {bn} in

tn · an such that {bn} converges to b in V .

Proof. Suppose that {an} and tn are convergent sequence in V . Then there

exist positive integer M1 and M2 such that ∥an∥ < M1 and |tn| < M2. Since

{an} converges to a and {tn} is converges to t, for every ϵ > 0 there exists a

positive number m such that for every n ≥ m

sup

∥∥∥∥h(an,−a, (m−2)

0

)∥∥∥∥ < ϵ

M1 +M2
, sup

∥∥∥∥f (tn,−t, (m−2)

0

)∥∥∥∥ < ϵ

M1 +M2
.

Let x ∈ h

(
an,−a,

(m−2)

0

)
and y ∈ f

(
tn,−t,

(m−2)

0

)
. This implies that

a ∈ h

(
an,−x,

(m−2)

0

)
and t ∈ f

(
tn,−y,

(m−2)

0

)
=⇒ t · a ⊆ f

(
tn,−y,

(m−2)

0

)
· h

(
an,−x,

(m−2)

0

)
=

{
z1 · z2 : z1 ∈ f

(
tn,−y,

(m−2)

0

)
, z2 ∈ h

(
an,−x,

(m−2)

0

)}
=

{
f

(
tn,−y,

(m−2)

0

)
· z2 : z2 ∈ h

(
an,−x,

(m−2)

0

)}
=

{
h

(
tn · z2,−y.z2,

(m−2)

0

)
: z2 ∈ h

(
an,−x,

(m−2)

0

)}
⊆ h

(
tn.h

(
an,−x,

(m−2)

0

)
,−y · h

(
an,−x,

(m−2)

0

)
,
(m−2)

0

)
⊆ h

(
h

(
tn · an, tn · (−x),

(m−2)

0

)
, h

(
−y.an, (−y).(−x),

(m−2)

0

)
,
(m−2)

0

)
⊆ h

(
tn · an, h

(
tn · (−x), h

(
−y · an, (−y) · (−x),

(m−2)

0

)
,
(m−2)

0

)
,
(m−2)

0

)
.

Let b be any element of t.a. Then, there exists cn ∈ tn.an and

dn ∈ h

(
tn.(−x), h

(
−y.an, (−y).(−x),

(m−2)

0

)
,
(m−2)

0

)
,
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such that b ∈ h

(
cn, dn,

(m−2)

0

)
. Hence

dn ∈ h

(
b,−cn,

(m−2)

0

)
=⇒ ∥dn∥ ≤ sup

∥∥∥∥h(tn · (−x), h
(
−y.an, (−y) · (−x),

(m−2)

0

)
,
(m−2)

0

)∥∥∥∥
≤ sup ∥tn · (−x)∥+ sup

∥∥∥∥h(−y · an, (−y) · (−x), (m−2)

0

)∥∥∥∥
≤ sup ∥tn · (−x)∥+ sup ∥−y · an∥+ sup∥(−y) · (−x)∥

=⇒ sup

∥∥∥∥h(b,−cn, (m−2)

0

)∥∥∥∥ ≤| tn | ∥x∥+ | y | ∥an∥+ | y | ∥x∥

≤M2∥x∥+ | y |M1+ | y | ∥x∥,

this is true for every x ∈ h

(
an,−a,

(m−2)

0

)
and y ∈ f

(
tn,−t,

(m−2)

0

)
. This

implies that

sup

∥∥∥∥h(cn,−b, (m−2)

0

)∥∥∥∥ ≤ ϵ

M1 +M2
M +

ϵ

M1 +M2
N +

ϵ

M1 +M2

ϵ

M1 +M2

≤ {1 + ϵ

(M1 +M2)2
}ϵ < 2ϵ.

Therefore {cn} converges to b.

This completes the proof. □

Proposition 3.11. Let {an} be a convergent sequence in V . Then, every

subsequence of {an} is convergent to V .

Proof. Suppose that {an} converges to a in V . Then for any ϵ > 0 there exists

a positive integer k such that

sup

∥∥∥∥h(an,−a, (m−2)

0

)∥∥∥∥ < ϵ

2
, sup

∥∥∥∥h(an,−am, (m−2)

0

)∥∥∥∥ < ϵ

2
.

for every n,m > k. Let {ank
} be a subsequence of {an}. Now we have

sup

∥∥∥∥h(ank
,−a,

(m−2)

0

)∥∥∥∥
≤ sup

∥∥∥∥h(ank
, h

(
−a, h

(
an,−an,

(m−2)

0

)
,
(m−2)

0

)
,
(m−2)

0

)∥∥∥∥
= sup

∥∥∥∥h(ank
, h

(
h

(
an,−a,

(m−2)

0

)
,−an,

(m−2)

0

)
,
(m−2)

0

)∥∥∥∥
= sup

∥∥∥∥h(h(ank
,−an,

(m−2)

0

)
, h

(
an,−a,

(m−2)

0

)
,
(m−2)

0

)∥∥∥∥
≤ sup

∥∥∥∥h(ank
,−an,

(m−2)

0

)∥∥∥∥+ sup

∥∥∥∥h(an,−a, (m−2)

0

)∥∥∥∥ .
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Hence sup

∥∥∥∥h(ank
,−a,

(m−2)

0

)∥∥∥∥ < ϵ. For every nnk
> m. This implies that

{ank
} converges to a.

This completes the proof. □

Definition 3.12. Let V be a hypervector space over F and C be a subspace

of V . We say that C is a bundle subspace if for every x ∈ V there exists λ ∈ F ,

such that x ∈ h

λ · y, C, 0, ..., 0︸ ︷︷ ︸
m−2

, for every y such that 1 · y ∩ C = ∅.

Definition 3.13. In the Example 3.2, C = {0, 1, 0} is a bundle subspace.

Proposition 3.14. Let C be a bundle subspace of additive m-ary hypervector

space V and y ∈ V such that 1 · y ∩ C = ∅. Then, for every x ∈ V there exists

a unique λ ∈ F such that

x ∈ h

λ · x,C, 0, ..., 0︸ ︷︷ ︸
m−2

 .

Proof. Suppose that λ1, λ2 ∈ F such that λ1 ̸= λ2 such that x ∈ h

λ1 · y, C, 0, ..., 0︸ ︷︷ ︸
m−2


and x ∈ h

λ2 · y, C, 0, ..., 0︸ ︷︷ ︸
m−2

. So there exist z1 ∈ λ1 · y, z2 ∈ λ2 · y and

c1, c2 ∈ C such that x = h

z1, c1, 0, ..., 0︸ ︷︷ ︸
m−2

 and x = h

z2, c2, 0, ..., 0︸ ︷︷ ︸
m−2

. Hence

h

z1,−z2, 0, ..., 0︸ ︷︷ ︸
m−2

 ∈ h

λ1 · y,−λ2 · y, 0, ..., 0︸ ︷︷ ︸
m−2

 = f

λ1,−λ2, 0, ..., 0︸ ︷︷ ︸
m−2

 · y.

On the other hand

h

(
z1,−z2,

(m−2)

0

)
= h

(
h

(
x,−c1,

(m−2)

0

)
, h

(
−x, c2,

(m−2)

0

)
,
(m−2)

0

)
= h

(
h

(
h

(
x,−c1,

(m−2)

0

)
,−x,

(m−2)

0

)
, c2,

(m−2)

0

)
= h

(
h

(
h

(
−x, x,

(m−2)

0

)
,−c1,

(m−2)

0

)
, c2,

(m−2)

0

)
= h

(
h

(
−x, x,

(m−2)

0

)
, h

(
c2,−c1

(m−2)

0

)
,
(m−2)

0

)
= h

(
c2,−c1

(m−2)

0

)
.
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Since C is a vector space C∩1F ·y ̸= ∅, and this is contradiction. This completes

the proof. □

Proposition 3.15. Let V be an additive m- ary hypervector space over R and

T : V −→ R be a linear functional. Then, Kerl T is a bundle subspace.

Proof. One can see that Kerl T is a subspace of V . Suppose that 1F · x0 ∩

Kerl T = ∅ and x ∈ V . Let λ = T (x)
T (x0)

. We prove that x ∈ h

(
λ · x0,KerlT,

(m−2)

0

)
.

Let y ∈ h

(
x,− T (x)

T (x0)
· x0,

(m−2)

0

)
. Then

T (y) ∈ T

(
h

(
x,− T (x)

T (x0)
· x0,

(m−2)

0

))
=

{
T

(
x,−z

(m−2)

0

)
: z ∈ T (x)

T (x0)

}
= h

(
T (x),−

{
T (z) : z ∈ T (x)

T (x0)
· x0

}
,
(m−2)

0

)
= h

(
T (x),−T

(
T (x)
T (x0)

· x0
)
,
(m−2)

0

)
= h

(
T (x),− T (x)

T (x0)
T (x0),

(m−2)

0

)
= 0.

So y ∈ kerl T . Since h

(
x,−y,

(m−2)

0

)
∈ T (x)

T (x0)
· x0, then

x = h

(
h

(
x,−y,

(m−2)

0

)
, y,

(m−2)

0

)
∈ h

(
T (x)

T (x0)
· x0,Kerl T,

(m−2)

0

)
.

This completes the proof. □

Proposition 3.16. Let V be an additive m-ary hypervector space and C be

a bundle subset of V . Then, there exists a linear functional T such that C ⊆
Kerl T .

Proof. Suppose that x0 ∈ V , such that 1F ·x0∩C ̸= ∅. By Proposition 3.14 for

every x ∈ V , there exists a unique λx ∈ F such that x ∈ h

(
λx · x0, C,

(m−2)

0

)
.

We define T : V −→ F by T (x) = λx, then T is linearly functional. Indeed, for

every x ∈ V , there exist λx ∈ F , such that x ∈ h

λx · x0, C, 0, ..., 0︸ ︷︷ ︸
m−2

 . Then

we have
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h (x1, x2, ..., xm) ∈ h

(
h

(
λx1 · x0, C,

(m−2)

0

)
, · · · , h

(
λxm · x0, C,

(m−2)

0

))
= h

h (λx1 · x0, λx2 · x0, ..., λxm · x0) , h (C,C, ..., C) , 0, ..., 0︸ ︷︷ ︸
m−2


⊆ h

h (λx1 · x0, λx2 · x0, ..., λxm · x0) , C, 0, ..., 0︸ ︷︷ ︸
m−2

 .

Hence

T (h(x1, x2, ..., xm)) = h (λx1 , λx2 , ..., λxm) = h (T (x1), T (x2), ..., T (xm)) .

Also,

λ.x ⊆ λ.h

(
λx · x0, C,

(m−2)

0

)
= h

(
(λ · λx) · x0, λ · C,

(m−2)

0

)
⊆ h

(
(λ · λx) · x0, C,

(m−2)

0

)
.

Hence

T (λ · x) = λ · λx = λ · T (x).
Now, let x ∈ C. Then, we have

0 ∈ h

(
0 · x0, C,

(m−2)

0

)
.

It means that T (x) = 0, and the proof is completes. □

Definition 3.17. Let V be an m-ary hypervector space and V1 ⊆ V . We

say that V1 is called closed if for every sequence {xn} in V1 in such that

limn→∞xn = x implies that x ∈ V1.

Definition 3.18. Let V1 and V2 be two normed hypervector space and T :

V1 → V2 be homomorphism. We define

∥T∥ = sup

{
sup

∥∥∥∥T (
1

∥v∥
· v

)∥∥∥∥ : 0 ̸= v ∈ V

}
.

Theorem 3.19. Let V be an additive m-ary hypervector space on R and T :

V → R linear functional. Then, kerl T is closed subspace of V if and only if

T is continuous.

Proof. Suppose that kerlT is a closed subspace of V and T is not continues.

This implies that for every n ∈ N there exists vn ∈ V such that

sup

∥∥∥∥T (
1

∥vn∥
· vn

)∥∥∥∥ =
|T (vn)|
∥vn∥

> n,

for every n ∈ N. Hence there exists xn ∈ 1
∥vn∥ · vn such that |T (xn)| > n.

Let x ∈ h

(
x1,− T (x1)

T (xn)
· xn,

(m−2)

0

)
. Then there exists y ∈ T (x1)

T (xn)
· xn such that
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x = h

(
x1,−y,

(m−2)

0

)
. This implies that

T (x) = h

(
T (x1),−T (y),

(m−2)

0

)
∈ h

(
T (x1),−T

(
T (x1)

T (xn)
· xn

)
,
(m−2)

0

)
= 0.

This implies that h

(
x1,− T (x1)

T (xn)
· xn,

(m−2)

0

)
⊆ Kerl T . For every n ∈ N, let

tn ∈ h

(
x1,− T (x1)

T (xn)
· xn,

(m−2)

0

)
. Then,∥∥∥∥h(tn,−x1, (m−2)

0

)∥∥∥∥ ≤ sup

∥∥∥∥h(h(x1,−T (x1)

T (xn)
· xn,

(m−2)

0

)
,−x1,

(m−2)

0

)∥∥∥∥
= sup

∥∥∥∥T (x1)T (xn)
· xn

∥∥∥∥ ≤ T (x1)

n

So limn→∞tn = x1. This is contradiction. Hence T is continuous.

Conversely, let {xn} be a sequence in kerlT . For any ϵ > 0, there exists

n ∈ N such that

|T (x)− T (xn)| = |T (x)| < ε.

This completes the proof. □

Theorem 3.20. Let V1 and V2 be two normed m-ary hypervector space and

ψ : V1 −→ V2 be a homomorphism such that for every convergent sequence

{xn} in V1, the sequence {ψ(xn)} is a convergent sequence in V1. Then ψ is

continues.

Proof. Suppose that ψ is not continues. So for every n ∈ N, there is xn ∈ V1
such that

sup

∥∥∥∥ψ(
1

∥xn∥1
· xn

)∥∥∥∥
2

= sup

∥∥∥∥ 1

∥xn∥1
· ψ(xn)

∥∥∥∥
2

> n.

Hence there exists bn ∈ 1
∥xn∥1

· xn such that ∥ψ(bn)∥ > n, for every n ∈ N.
Thus,

sup

∥∥∥∥ 1√
n
· ψ(bn)

∥∥∥∥
2

>
n√
n
=

√
n.

This implies that {ψ(bn)} is not convergent. Moreover,

sup

∥∥∥∥ 1√
n
· bn

∥∥∥∥
1

≤ 1√
n
.

So {bn} is a convergent sequence in V1 but {ψ(bn)} is not convergent. Therefore,
ψ is continuous. □
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